
The Bitcoin protocol

Balázs Kőműves

Falkstenen AB

Budapest, 30 May 2014

Overview of the talk

I will try to explain how Bitcoin works under the hood, going into details
as far as time and my limited knowledge allows. I will cover the Bitcoin
protocol as of mid-2013 (so newer developments like SPV, HD wallets or
the payment protocol will be excluded).

Short overview:

I overview of Bitcoin

I the blockchain

I structure of a block

I mining

I bitcoin adresses

I transactions

I scripts

I elliptic curves

I ECDSA

High-level overview of Bitcoin

Bitcoin is a set of protocols and software which allows individuals
and organizations:

I to send digital currency tokens to each other over the internet

I almost instantaneously (depending on confidence level, somewhere
between 1 minute and 1 hour)

I cheaply (approximately 1-10 HUF per transaction at the moment,
independently of the value of the tokens)

I pseudo-anonymously (more on this later)

I without the ability to cheat (uses digital signatures for proof of
ownership)

I without any centralized control (distributed protocol)

I with a prefixed supply curve of said tokens

Low-level overview of Bitcoin

Bitcoin is a decentralized, peer-to-peer digital currency protocol.

I bitcoin addresses correspond to private/public key pairs
(more precisely, addresses are hashes of public keys)

I addresses can hold amounts of coins (varying in time)

I transactions spend the output(s) of previous transaction(s)

I a transaction specifies how its output(s) can be spend in the future

I typical transcation: send the coins to one or more address(es)
I the spending condition: the next spender(s) must prove that

they own the private key(s) corresponding to these addreses

I transactions are stored in the public ledger (which is a decentralized
database)

I it’s the the set of transactions which is fundamental - the “coins”
are just invariants.

Public key cryptography

Each party has a pair (d,Q) of corresponding keys: Q is public
(say, on published on their homepage) and d is private (typically
only a single person knows it).

Main applications:

I Estabilishing a shared secret without meeting (key exchange)

I Send messages which only the intended recepient can decrypt
(encryption)

I Prove that a message was really written by the person who
claims it (signature)

From these basic building blocks, a huge set of really interesting
applications can be built. Bitcoin only uses the signature algorithm.

Public-key crypto is widely used on the internet today: HTTPS,
SSH, TLS, PGP, Bitcoin, OTR messaging, etc...

Bitcoin transaction example, part I.

I expect income from two sources:

I I sold a book to a Alice for 0.3 BTC

I I made a bet with Bob, and won 0.2 BTC

I generate two key-pairs (d1, Q1) and (d2, Q2) and derive the
corresponding addresses A1 and A2. Give the address A1 to Alice and
the address A2 to Bob. They send me the agreed amounts. Two
transactions T1 and T2 will appear in the ledger:

I T1 says that 0.3 BTC can be spent by anybody who can prove that they
know d1

I T2 says that 0.2 BTC can be spent by anybody who can prove that they
know d2

This means that I “own” 0.5 BTC alltogether (since nobody else knows
d1 or d2).

Next, let’s say I want to buy a bottle of whisky for 0.4 BTC!

Bitcoin transaction example, part II.

To send 0.4 BTC for the address of the whisky shop Aw, I need to craft a
transaction T which “spends” the outputs of the previous transactions T1

and T2, sends 0.4 BTC of it to the whisky shop, and sends the remaining
0.1 BTC back to me (usually to a freshly generated address A3)

The transaction T is signed with the private keys corresponding to the

addresses A1 and A2, to prove that they belong to me.

The blockchain
The public ledger, called the blockchain in Bitcoin-slang, is a distributed,
(mostly) append-only database.

I the blockchain is built up from blocks; on average 1 new block is
produced and appended every 10 minutes

I each block contains a small header, and a set of transactions

I the blocks are organized in a linked list (chain), starting from the “genesis
block”

I each block is produced by a single participant “node”; to decide which
node will produce the next block, the protocol uses a hash based lottery,
with winning chance proportional to CPU-power (this process is usually
called “mining”, which is rather confusing)

I people wanting to transact simply broadcast their (signed) transactions to
the nodes

I to incentivise nodes to participate in this process, a reward is given to the
winner, and they also get all the transaction costs for the set of
transactions they include in that block

I typically, each participant node has a full copy of the database (currently
around 18 gigabytes)

A block

A block consists of a block header (80 bytes), plus a set of
transactions.

The header consists of:
I block version number (4 bytes; currently 0x00000002, little-endian)

I hash of the previous block’s header (32 bytes)

I the Merkle root of all transaction in this block (32 bytes)

I a unix timestamp (4 bytes)

I the current difficulty target (4 bytes)

I a nonce (4 bytes)

I (number of transactions (varint) - not actually part of the header)

A block is considered valid, if:
I all the previous blocks in the chain are valid

I the hash of the block header is smaller than the current target

I all the individual transactions are valid, and the Merkle root matches

Merkle trees

A Merkle tree is a hash tree. Bitcoin uses double-SHA256 as its
primary hash function, that is, hash=SHA256(SHA256(msg)).

I for each transaction, a transaction hash is computed

I a binary tree is built, such that the leaves are labeled with the
hashes of the individual transactions

I rows with odd number of elements are extended to be even by
duplicating the last hash

I for each node, the hashes of its two children are concatenated, and
the node is labelled by the hash of this string

I the Merkle root is the hash at the root node

If the set of transactions changes any way, the Merkle root also
changes (and it changes unpredictably).

The lottery (or “mining”, or proof-of-work)

To be able to decide who produces the next block, a lottery process is
used (confusingly called “mining”):

I the Merkle tree of the set of current transactions is computed

I the first transaction must be always the so-called coinbase transaction (or
generation), which gives a reward to the miner

I thus the Merkle root will be different for all participants

I these days, an extra nonce is also contained in this transaction

I the nonce (and the extra-nonce) is set to whatever (typically increasing
numbers for simplicity)

I the hash of the block header is computed

I if the hash is smaller than the current target, we won, and broadcast the
new block to the network

I othewise, new nonces are set and the hash is computed again

If there are conflicting blocks (winners), the chain with the most “work”
is chosen. Abandoned blocks are called orphan blocks.

(→ standard practice of waiting for 6 confirmations to be safe)

The difficulty (or target)

The difficulty is a number (approx. 1010 now), which encodes a 32 byte
long target. The block hash (which can be considered random for all
practical purposes) must be below this target for a block to be valid.

Thus the difficulty controls that on average how often there is a winner
of the lottery. To have a balanced stream of blocks (in time), this
difficulty is adjusted every two weeks (more precisely, every 2016 blocks),
based on the number of the blocks in the previous two weeks, so that on
average there are 10 blocks (winners) per minute.

While in principle a miner could use a smaller difficulty (higher target)
than the others, the protocol says that in case of competing chains
(branches), one should choose the one with “more proof-of-work”;
more-or-less, this means the one which contains blocks with higher
summed difficulty. There is also a standard formula for adjusting the
difficulty, but it is done individually by each client.

Note: The difficulty is encoded in the block headers in 4 bytes using a custom

exponential encoding.

The blocks on wire (or disk)

If you want to write a blockchain parser, you need to download the
blockchain in some format. The official client simply stores the
blocks on the disk (in the files blk00NNN.dat) more-or-less as
they come on the wire, which is:

I magic bytes 0xf9beb4d9 (4 bytes, big-endian)

I length of the block (4 bytes, little-endian)

I the block data as shown before:

I header (80 bytes)
I number of transactions (varint)
I the transactions

Unfortunately, sometimes there is a random number of zero bytes
between the blocks. I couldn’t find any pattern of where, why, and
how many zero bytes are there...

Bitcoin addresses

Bitcoin addresses correspond to private/public keypairs. “Owning” an
address is equivalent to knowing the private key. A user can have any
number of addresses, and an address can hold any number of “coins”.

Recall that an ECC private key is a random number d ∈ [1, n− 1], and
the corresponding public key is the point Q = dG ∈ G on the elliptic
curve G, where G ∈ G is the fixed generator. This point can be
represented by its affine coordinates dG = (x, y) ∈ G ⊂ A2 ⊂ P2.

Because of the curve equation G = { (x, y) : y2 = x3 + 7 }, the y
coordinate can be computed (up to parity) from the x coordinate, giving
another representation consisting of x and the parity of y.

Unfortunately, because of historical reasons, both versions are used on

the Bitcoin network, thus there are two addresses corresponding to a

single private key.

Construction of Bitcoin addresses

I a representation of the public key is chosen, and encoded as follows

I the coordinates are encoded as 32 bytes big-endian integers
I full public key: 0x04 (x coord) (y coord)
I compr. pub. key, y even: 0x02 (x coord)
I compr. pub. key, y odd: 0x03 (x coord)

I compute hash=RIPEMD160(SHA256(pubkey))

I add a version byte in the front, which is 0x00 for the main Bitcoin
network (0x6f for testnet3; 0x05 for pay-to-script-hash addresses)

I compute SHA256(SHA256(0x00||hash)), and discard everything
except the first 4 bytes; this will be the checksum.

I create the string (0x00||hash||checksum)

I convert this to an ASCII string using Base58 encoding.

Note: This process can be easily inverted to recover the hash of
the public key, but not the public key itself.

Transactions

A bitcoin transaction consists of several inputs and several outputs. Inputs
refer back to a selected output of an earlier transaction, which this transaction
spends; and outputs are conditions on how to spend them. The creator of a
transaction must prove, for each individual input, that he is allowed to spend
them.

The most often used condition, called pay-to-address, is that the spender must
prove that he owns a given address (that is, he knows the corresponding private
key).

Another useful transaction is the generation or coinbase transaction, which is
always the very first transaction in a block, and serves dual purposes:

I it is a reward for the miner for providing the service of maintaining the network

I but more importantly, it is a way to “mint” coins. So this is how the supply of
bitcoins is created and distributed.

There are a few more standard transaction types, and in fact a full scripting

language to specify spending conditions, though most of it is disabled (because

of security fears).

A randomly chosen transaction (source: http://blockexplorer.com)

A randomly chosen transaction (source: http://blockexplorer.com)

The structure of a transaction (Tx)

A transaction is basically defined by a list of inputs and outputs. It
is encoded as follows:

I transaction version number (4 bytes; currently 0x00000001)

I number of tx inputs (varint1)

I list of tx inputs

I number of tx outputs (varint)

I list of tx outputs

I the lock-time 2 (4 bytes)

1varint = a customly encoded variable-length integer
2The lock-time is a rarely used feature, which specifies a time in the future

(measured either in block height or in unix timestamp), before which the
transaction cannot be included in any block.

Transaction inputs (TxIn)
A transaction input refers back to a single output of a previous transaction
(possibly in the same block), and proves that one is allowed to spend that
output. It is encoded as follows:

I the hash of the previous tx we refer back to (32 bytes)

I the index of a specific output from that transaction (4 bytes, indexing
starts from 0)

I the length of the signature script (varint)

I the signature script (often called “sigScript”)

I the sequence number (4 bytes; typically 0)

The signature script contains the proof that we are allowed to spend the given
output. In the case of a pay-to-address previous tx, it will contain:

I the public key corresponding to the address we own

I the signature with the corresponding private key of a modifiction of this
transaction (it must be modified to avoid self-signing, which is
impossible).

Transaction outputs (TxOut)

A transaction output simply specifies an amount of bitcoins, and a condition of
how it can be spent. The most often used condition, called pay-to-address,
specifies that the spender must own the address given here.

It is encoded as follows:

I transaction value (8 bytes, encoded as an 8 decimal digits fixed point
number)

I length of the pubKeyScript

I the pubKeyScript (or pkScript) (containing the condition)

The spending condition is encoded as an arbitrary3 script, which, combined with
the future signature script, must produce true for the spending tx to be vaid.

The sum of the input coins must be equal or more than the sum of the output

coins; the difference is the transaction fee, which will go the miner who

produces the block which includes the given transaction.

3in practice, the reference client only relays the so-called “standard” scripts

The coinbase (or generation) transaction

The first (and only the first) transaction in each block must the
generation transaction. This is the only kind of transaction which has no
(real) inputs. It serves dual purposes:

I to reward the miner who produced this block

I a constant reward, currently 25BTC, halving every 4 years
I plus all the transaction fees of the transactions included in the block

I to create new bitcoins

The reward is set so that this “minting” of new bitcoins diminishes over
the years, and converges to 21,000,000 bitcoins. Thus there will be never
more 21M bitcoins (unless this part of the protocol changes, which is
really unlikely because none of the holders want that).

There is a field (called coinbase) containing arbitrary data; this is used

for the extra-nonce, for political messages, the block height, and

sometimes to vote whether miners accept a proposed protocol change.

Script execution

The script language is a simple4, stack-based, non-Turing-complete
language.

Execution:

I first execute the scriptSig (= proof) of this transaction. This is not
allowed to do anything else than push data to the stack (said data will
contain the proof);

I then delete the secondary stack (which is typically not used anyway);

I finally execute the pkScript (= condition) of the previous transaction
(whose output we spend).

If at the end the top of the stack contains true, we accept the proof,
otherwise not.

Remark: Since each (non-coinbase) tx contains at least one input, which

must contain a signature of this transaction5, third parties cannot modify

transactions to redirect the outputs.

4there are a lot of corner cases, though...
5at least with typical spending condition - so called puzzle transaction may

not contain such a signature, and thus can be modified by third parties

Pay-to-address script example

step stack after opcode description

0 (empty) - initialization

1 sig PUSH <sig> signature

2 sig | pk PUSH <pubkey> pubkey

3 sig | pk | pk DUP duplicate pubkey

4 sig | pk | addr HASH160 compute address
(= hash of pubkey)

5 sig | pk | addr | pkhash PUSH <pkhash> push the recepient address

6 sig | pk EQUALVERIFY check agreement

7 true CHECKSIG check signature

OP CHECKSIG and signing transactions

The CHECKSIG opcode executes a rather involved procedure.

1. the public key and the signature is popped from the stack, and decoded
(we fail if the encoding is invalid).

2. the so-called subscript is formed. Usually this is just pkScript6

3. extract the so-called sigHash byte from the signature (usually this is
SIGHASH ALL). Depending on the value of this, we may proceed diferently

4. replace all input scripts with empty strings, except the current input
which is replaced with the subscript (→ tx malleability)

5. append the sigHash byte, extended to a 4-byte little endian word, to the
serialized, modified transaction

6. verify the signature against the (double-SHA256 hash of) this final
bytestring.

The signing procedure is implied by the above checking procedure: The

above is done for all inputs do derive all the signatures. For the rest of

sigHash flag possibilities, the process is a bit different.

6but there is a very complicated and confusing prodecure of how exactly do
this in general, which, as far as I knew, was never executed in history...

The SigHash byte

The sigHash byte controls how the outputs are signed. The above
process is slightly modified based on this (for example, the outputs
are also modified). This feature can be used for “smart contracts”,
which need interaction between different parties to create a
transaction. The valid values of the sigHash byte are:

I SIGHASH ALL = 0x01 7

I SIGHASH NONE = 0x02

I SIGHASH SINGLE = 0x03

I SIGHASH ANYONECANPAY = 0x80 (flag)

ALL (the default) means that all outputs must be signed.

NONE means that none of the outputs should be signed - we don’t care where the
outputs go.

SINGLE means that only the output corresponding to the current input must be signed.

ANYONECANPAY means that other people can extend this transaction with more inputs.

7but because of some old bug, 0x00 (or a missing byte) is also accepted

Key and signature encodings
Pubkeys are encoded as with the address: 33 or 65 byte, starting with 0x02,
0x03 or 0x04 (except that 0x06 also appears at some point instead of 0x04...)

Signatures are (R,S) ∈ Zn × Zn pairs encoded in ASN.1 DER:

sig = [0x30 N 0x02 nR (. . . R . . .)︸ ︷︷ ︸
nr

0x02 nS (. . . S . . .)︸ ︷︷ ︸
nS︸ ︷︷ ︸

N

sigHash]

Except that

I there is an extra sigHash byte at the end

I DER encoding should be unique, but OpenSSL accepts some non-conforming
encodings too, so you have to do that too (→ signature malleability)

I multisig sometimes looks a bit different

Unfortunately, a client must reproduce all past bugs of the official client (which it has

a lot...), as people tested all the bugs by putting transactions in the blockchain. And

when they sometimes fix one, you must branch on the block height when they fixed it.

Wallet Import Format: Base58 encoding form of the big-endian 32 byte private

key, prepended with a version byte 0x80; except when the corresponding public

key is in compressed form, then also add an extra 0x01 byte at the end...

Signing messages

The official client (was: Bitcoin-QT, now: Bitcoin-Core) allows signing of
custom ASCII messages. This works a bit differently.

First, the message is encoded as [nmagic||magic||nmsg||msg], where the lengths
are encoded with the VarInt encoding, and magic is the string "Bitcoin

Signed Message:\n".8

Then the signature (R,S), the pubkey format (compressed or uncompressed),
the parity of y, and one more bit of extra information (whether R = x) is
encoded in yet another custom encoding, which is then Base64 encoded (not
Base58). The extra bits of information are necessary to recover the public key
from the signature, so the other party needs to know only your address to
check the signature.

The encoding is 1 byte containing the 3 bits (between 0x1b and 0x22) followed

by 32 byte R and 32 byte S as big-endian integers.9

8of course this isn’t documented anywhere...
9...and neither is this

Multisig transactions

There can be transactions which need N out of K signatures to be valid
(N ≤ K), called “multi-sig”. This can be useful in various situations:

I two-factor authentication: with a 2-of-2 multisig transaction, you need
both signatures to spend. If the two signing devices are physically
separate, this adds extra security (it is not enough to hack one device).

I signing rights: similarly, a company may say that it needs 3 out of 5
executive’s digital signature to spend some funds

I escrow services: If there is a seller and buyer on the internet who don’t
fully trust each other, they can use an escrow. However they both needs
to trust the escrow. With a 2-of-3 multisig transactions, if there is no
dispute, the two parties can sign the transaction; if there is dispute, the
escrow can decide and sign it together with the party who is right.

This uses the CHECKMULTISIG opcode, which is even more complex (and

contains some new bugs). Usually to funds are sent to a multisig

address10 first, which can be spent only with the necessary number of

signatures.

10this is pay-to-script-hash (P2SH) address

Pay-to-script-hash (P2SH)

This is an ugly hack to enable reversion of control. It introduces a

I a new address type (starts with ’3’; version byte is 0x05) (BIP 13)

I a new “standard transaction type” and a special behaviour for
transactions matching that template (BIP 16)

In the address, instead of the 20-byte hash of the public key, we use the
20-byte hash of the script which will specify the condition to spend.

The new standard transaction script looks like

pkScript = OP HASH160 [20-byte-hash-value] OP EQUAL

sigScript = [signatures] {serialized script}
If a transaction matches the above pattern, the following special behaviour is
invoked:

I sigScript is executed (fails if there is anything else than OP PUSH)

I the serialized script is popped from the stack

I the hash of this script is checked against the one in pkScript

I the script is executed

Networking

Bitcoin uses a more-or-less straightforward peer-to-peer networking
scheme (based on broadcasting to connected peers). This includes

I peer discovery

I bootstrapping used to be via IRC, these days there are a few
wired-in server addresses

I then periodically broadcasting our own IP, and asking other nodes
for a list of peers

I selecting a few peers randomly

I relaying transactions

I relaying blocks

I initial download of older blocks

I etc

Newer developments:

I simplified payment verification (SPV) → thin clients

I some DOS protection is necessary

Elliptic curves

What is an elliptic curve?

I y2 = x3 + ax+ b over a field F
called the “short Weierstrass form”;
(char(F) 6= 2, 3 and 4a3 + 27b2 6= 0)

I smooth cubic plane curve (with a base point)

I (...other mathematical definitions...)

Etimology / history:

I arc length of an ellipse

I elliptic integrals

I the inverse problem: elliptic functions

I elliptic curves

Pictures of elliptic curves over R

The group law on elliptic curves

It’s a kind of surprising fact, that elliptic curves has a group
structure, which furthermore has a rather nice geometric
interpretation.

Definitions (for the Weierstrass form):

I identity element: The point at infinity (denoted by O)

I inverse: mirroring wrt. the X axis

I addition: if P , Q and R are on a straight line, we declare
P +Q+R = O

Group laws:

I the identity satisfies what it should (trivial)

I addition is commutative (trivial)

I addition is associative (nontrival!)

Addition on elliptic curves

Elliptic curve cryptography

Elliptic curve cryptography is based on the elliptic curve discrete
logarithm problem. Consider an elliptic curve G over a (very large)
finite field, usually either F2n or Fp for a prime p.

We fix the curve G and a generator G ∈ G of this group; that is,
G = { kG ∈ G : k ∈ [0, n− 1] } where n = |G| is the size of this
group.

I private key: a random number d ∈ [1, n− 1] ⊂ N
I public key: the group element Q = dG ∈ G

It is easy to compute Q from d and G in such a group, but very
hard (at least for appropriate choice of the field and G) to
determine d from Q.

Key length comparison

The primary advantage of ECC is that we can have shorter keys for
equivalent security:

Security level RSA key length ECC key length ratio

80 1024 160-223 5–6
112 2048 224-255 8–9
128 3072 256-283 11–12
192 7680 384-511 15–20
256 15360 512-571 27–30

The shorter key length can be actually important in practice:

I embedded devices with limited resources (smartcards, etc)

I large number of signatures: both bandwidth and storage can
be important (bitcoin)

A picture of y2 = x3 + 7 over F59

Remark: p ≈ 2256 ≈ 1077 ≈ no. of elementary particles in the universe

The secp256k1 curve

The safety of ECC depends on the hardness of the elliptic curve discrete
logarithm problem. Not all curves are created equal!

Bitcoin uses the curve called secp256k1:

I the field is Fp with p = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

I the curve equation is y2 = x3 + 7 (that is, a = 0 and b = 7)

I the number of points on the curve n is also a prime, and “close” to
p (to be more precise, p− 2129 < n < p− 2128)

I since n is prime, the group is cyclic; thus any element (except the
infinity) will do as the generator G

I but there is a concrete, randomly-looking G in the standard

p = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

n = 0x FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

Gx = 0x 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798

Gy = 0x 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

secp256k1 parameter choices

Arguably, apart from the choice generator, the parameters look
sincere:

I the prime field Fp is very close to 2256, and differs from it by
only a few bits

I the curve equation: if you look at y2 = x3 + b with
b ∈ {1, 2, 3, . . . }, it seems that b = 7 is the very first choice
where you can have a somewhat reasonable curve

I the size of the curve n is also a prime (the co-factor is h = 1),
which makes the code simpler

I the generator G, we have no idea how they chose that. On
the other hand, the group is cyclic, so in principle any G
would do (though it may happen that for special choices of G,
the discrete logarithm problem is simpler; I don’t know
anything about that)

Bernstein’s SafeCurves analysis (http://safecurves.cr.yp.to)

What does it mean?

I disc: is the discriminant large enough? (small discriminant is not an explicit
problem, but the story becomes more complicated, better be safe)

I ladder: is there a simple, fast and constant-time scalar multiplication algo
(similar to Montgomery ladder)?

I complete: is there a complete addition law (that is, one without special cases
like doubling)?

I ind: does an elliptic curve point representation looks random?

Conclusion: secp256k1 is probably OK for what Bitcoin uses it (if you

worry about timing attacks, maybe just add random delays?).

Example: Diffie-Hellmann key exchange11

Recall that a key pair (d,Q) consists of

I a private key, which is a random number d ∈ [1, n− 1] ⊂ N
I a public key, which is the group element Q = dG ∈ G

Let there be two parties: Alice and Bob, with key pairs (dA, QA)
and (dB, QB). They can compute a shared secret S ∈ G as follows:

dAQB = dA(dBG) = (dAdB)G︸ ︷︷ ︸
S

= dB(dAG) = dBQA

Alice can knows dA, so she can compute the leftmost version; Bob
knows dB, so he can compute the rightmost version. But nobody
else knows neither dA or dB, thus S is their secret.

They can then proceed and use S for any purpose, for example as
the key of a symmetric encryption scheme.

11not actually used by Bitcoin

Elliptic Curve Digital Signature Algorithm
Alice writes a message m, and wants to prove that she wrote it.
She already has key pair (dA, QA), and people accept that the
public key QA in fact belongs to her.

Construction of the signature:

1. compute a hash z = HASH(m) ∈ [1, n− 1] of the message m

2. generate an ephemeral key pair: k and Qk = kG = (x, y)

3. let r = (x mod n) ∈ Zn

4. let s = k−1(z + rdA) ∈ Zn

5. the signature is (r, s) ∈ Zn × Zn

Verification of the signature:

1. compute z = HASH(m) ∈ [1, n− 1] as before

2. compute u = s−1z ∈ Zn and v = s−1r ∈ Zn

3. compute the curve point (x, y) = Q = uG+ vQA ∈ G
4. the signature is valid iff x = r.

Representations of elliptic curve points

There are many different representations of elliptic curves:

I Weierstrass affine coordinates A2

I Weierstrass projective coordinates P2

I Weierstrass weighted projective coordinates P(2, 3, 1)
I Montgomery form

I Hessian form

I Jacobian form

I Edwards form

I etc...

Representation matters because of efficiency! And possibly also
different security properties.

Computations with elliptic curves, I.

How to compute dQ ∈ G efficiently, with d ∈ Zn and Q ∈ G?

Answer: “fast exponentation”! Write d in binary form:
d =

∑m−1
i=0 di2

i, where di ∈ {0, 1}.

dQ =

(
m−1∑
i=0

di2
i

)
·Q =

m−1∑
i=0

di(2
iQ) =

m−1∑
i=0

diQi

where Qi = 2iQ can be computated by repeated doubling:
Q0 = Q, Q1 = 2Q0, Q2 = 2Q1, Q3 = 2Q2, etc...

Thus we need addition and doubling (which is a special case of
addition, but needs to be handled separately anyway).

Elliptic curve addition and doubling in pictures

Elliptic curve addition and doubling in Weierstrass form

In any field F (char(F) 6= 2, 3), for two points P 6= Q 6= O on the
elliptic curve y2 = x3 + ax+ b, with coordinates P = (xp, yp) and
Q = (xq, yq), it is straightforward (?) to calculate the coordinates
of P +Q = R = (xr, yr) and 2P = U = (xu, yu):

s =
yq−yp
xq−xp

t =
3x2

p+a

2y

xr = s2 − (xp + xq) xu = t2 − 2xu
yr = −yp − s(xr − xp) yu = −yp − s(xu − xp)

Here s resp. t are the slopes of the secant resp. tangent lines.

