Cryptographic Passwords and Authentication

stf

<2018-06-23 Sat>

NIST 800-63-3: Digital Authentication Guidelines *

Minimum length: 8

Minimum maximum length: 64

>

>

» allow all printable ASCII characters

» allow even all UNICODE characters, emoji inclusive
>

No composition rules.

'https://pages.nist.gov/800-63-3/sp800-63-3.html

https://pages.nist.gov/800-63-3/sp800-63-3.html

Offline Dictionary Attacks

» leaked password dbs

» millions of dictionary words / second checked

Password Managers

» Do not reuse passwords
» Do not use dictionary words
» High entropy (>80bit)

(sometimes)

Online Password Managers

P easy syncing

» little installation overhead

» privacy
» attack surface (browser+3rd party)
> centralized, juicy target

classical convenience over security trade-off

Offline Password Managers

pro
» control
» verifiable
con
» syncing
» user is responsible for security

classical security over convenience trade-off

Cons of all passwords managers

» your master password is the key to the kingdom,
» offline bruteforce against your db
> keylogging

» many keep old user-chosen passwords, which are weak

Double Trouble

Double attack surface
» server user databases

» password storage

Crypto

magic silverbullets to the rescue \o/

SPHINX 2

Setup

® Group (i. The scheme works over a cyclic group & of prime order g, |¢| = £, with generator g.

o Hash functions H, H' map arbitrary-length strings into elements of {0,1}7 and G, respectively, where 7 is a
securily parameter.

s OPRF. Forakey k + Z,, we define function Fy, as Fy(x) = H(x, (H'(x))*).
e Farties. User U, Device D, Server S.

s Dictionary Dict of size 29 (a power of 2 is used for notational convenience only).
Initialization Phase (asswmned to be executed over secure links)

e FK-PTR Initalization: U chooses password pwd «
with D to compute rwd = FJ.(pwd).

Dict: D chooses and stores OPRF key £« Z: U interacts
Login Phase
e User-Device Interaction (FK-PTR)
1. U chooses p+ Z:sends oo = (H'(pwd))” to D.
2. D checks that the received o € G and if so it responds with 3 = a*

3. U sets wd = H(pwd, 3/7).

*https://eprint.iacr.org/2015/1099

https://eprint.iacr.org/2015/1099

SPHINX Benefits

a password Store that Perfectly Hides from ltself (No eXaggeration)

» information theoretically secure password store
» manager does not know password
» manager salt independent from input/output passwords

» can use more than one "master" password

how does this work again?

Enter password

1. user enters password

User chooses random R

1. user enters password

2. "user" chooses random R

User blinds password with R

1. user enters password
2. "user" chooses random R
3. a = H(pwd)R

User sends blinded password to storage

user enters password
"user" chooses random R
a = H(pwd)R

User sends a to storage

Ll s

Storage contributes its own "secret"

user enters password
"user" chooses random R
a = H(pwd)R

User sends 'a’ to storage
K

o s W=

Storage returns b = a

User unblinds final password

user enters password
"user" chooses random R
a = H(pwd)R

User sends 'a’ to storage
Storage returns b = aX

User unblinds b by b(!/R) = H(pwd)K

ok wh =

Security

vvyyy

v

storage compromise: no problem
network compromise: no problem
offline dictionary against server: no problem

storage+server compromised: offline dictionary against master
pwd

does not protect against compromised user (keylogging)

libsphinx et all

vVvyYyyvyy

>

https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx
https://github.com/stef/websphinx-chrom
https://github.com/stef/websphinx-firefox
https://github.com/stef/winsphinx

also implemented in the PITCHFORK!!!5! \o/

testers, ports to smartphones, users welcome!

https://github.com/stef/libsphinx
https://github.com/stef/pwdsphinx
https://github.com/stef/websphinx-chrom
https://github.com/stef/websphinx-firefox
https://github.com/stef/winsphinx

NIST 800-63-3: Digital Authentication Guidelines Il

Server Side
» No expiration without reason (forgotten,phished,leaked)

» All passwords hashed (keyed), salted (>32bit) and stretched
(pbkdf2 10.000)

» No password hints.

v

No Knowledge-based authentication.
No SMS in 2FA

v

OPAQUE 3

Login:

Init: On input pw, p, by U and k, PS by §, U computes rw = H(pw, H'(pw)*)
and ¢ = AuthEnc,,(py, Py, Ps). S stores (k, p;,). U only keeps pw.

U w) S (eps,c)
rnx €z, @ =H(pw), X=g"
ﬁ:ak, C]}’:g}' yezq
« rw € H(pw, 1)

vy, PKy, PK € AuthDec,, ()
* K = KE(p,,x,Pg,Y)

K = KE(p5y. Py X)

*https://eprint.iacr.org/2018/163

https://eprint.iacr.org/2018/163

OPAQUE Init

the server

» generates and publishes public key

» generates a random salt k for user
the user or the server:

» generates public key pair

> calculates secret key K = H(pw,H(pw)¥)

» encrypts user keypair and the server public key with K
finally

» the server stores the encrypted keys

OPAQUE user initiates session

the user

» generates an ephemeral keypair and a blinding factor r
» calculates a = H(pw)"

» sends a and the public ephemeral key over to the server

OPAQUE server response

the server

| 2
| 2
>

generates an ephemeral keypair
calculates b = a* where k is the random salt from the init

calculates a shared secret S using the long-term and ephemeral
keys
calculates auth=HMAC(1,S)

sends b, auth, the encrypted user keys & the public ephemeral
key over to the user

OPAQUE user finish

the user
> calculates K by unblinding b -> H(pwd,b(1/")
» decrypts the encrypted keys
» using the decrypted and the ephemeral keys calculates the
shared secret S
» using S calculates and verifies auth=HMAC(1,S)
» if user needs to authenticate it sends HMAC(2,S) to server

OPAQUE Benefits

vVvyyvyyvyy

>

cons:

>

forward secure

precomputation doesn’t help server compromise
stretching happens on the client

salt never leaves the server

password never leaves the client

is an AKE — shared key

explicit user authentication is an extra message

OPAQUE in libsphinx

OPAQUE implemented in
https://github.com/stef/libsphinx

ports to PAM, ningx auth module, javascript, php, etc warmly
welcome.

https://github.com/stef/libsphinx

The End

Questions?

	Cryptographic Password and Authentication

